Size: a a a

2017 March 03
TechSparks
Чем больше борцы за авторские права закручивают гайки, тем сложнее подобрать к собственному видеоролику музыкальный трек, который не вызвал бы вопросов у бдительной системы охраны прав на видеохостинге, например на Ютюбе. А красивой музыки хочется, и не у всех есть друзья-музыканты и композиторы. Проблему взялся решать стартап, в котором машинный интеллект пишет в неограниченных количествах некопирайтную музыку. Небесплатно, конечно, но не по ценам существующих агентств. Первыми прелесть такой модели осознали информагентства, которым тоже хочется музыкальный фон и не хочется платить правообладателям. Остаётся дождаться публичного запуска - и попробовать. Те эксперименты, с которыми я сам знаком, вселяют надежду, что качество машинной музыки при участии нейронок будет вполне ОК.
https://thenextweb.com/artificial-intelligence/2017/03/03/amper-music-creating-ai-doesnt-suck/#.tnw_cvmcjYQA
источник
2017 March 04
TechSparks
Далёкие от IT люди все ещё плохо представляют, как открытый софт меняет мир, как буквально за несколько лет то, что было ценным секретом, тщательно охраняемой интеллектуальной собственностью - вдруг официально стало доступно всем, а местами ещё и превратилось в объект совместного глобального творчества.
А тут NASA выложило целый каталог своего софта. Среди окружающих меня людей из разных уголков инженерного мира наблюдаю разнообразные восторги ;) Даже если вы не технарь - почитайте оглавление.
https://software.nasa.gov
источник
2017 March 06
TechSparks
Новый Микрософт при Наделле - это реально другая компания. (Это я как живущий с тучей эппловых девайсов человек говорю.) Вот взгляните, как уверенно они играют на поле, которое казалось яблочным: вдохновляющий образ будущего. Красивые и талантливые люди с айпадами уже не выглядят привлекательнее публики с девайсами из семейства Surface - потому что Микрософт сумел-таки придумать и создать интереснейшую линейку офисных устройств. Правда, на мобильном пока голяк, и полноценной платформы не выходит. Посмотрим, удастся ли им так взлететь.
И в любом случае советую пару минут потратить на просмотр ролика по ссылке. В конце концов, это просто красиво ;)
http://www.theverge.com/2017/3/6/14828428/microsoft-steelcase-office-surface
источник
2017 March 07
TechSparks
Это, конечно, серьезный троллинг: BBC сообщает в Фейсбук о массе фотографий в нем, содержащих детскую порнографию. Фейсбук обещает убрать, но проверка BBC показывает, что 80% картинок так и остались доступны - и снова жалуется в Фейсбук. Тут ФБ требует, чтобы им выслали картинки, о которых идет речь - а получив изображения, сообщает в полицию о рассылке детского порно. Круто, но не сильно помогает замаскировать главную проблему: не все у ФБ гладко в использовании машинного обучения для распознавания и детектирования разных нехороших ситуаций. Понятно, что объемы - фантастические (в день загружается 300 млн картинок!), ни у кого нет такого количества непрерывно загружаемого пользователями контента. И все же, постоянно и громко заявляя о могучих алгоритмах искуственного интеллекта, можно было бы более систематично его использовать - не только для оптимизации таргетингов рекламы.
http://www.wired.co.uk/article/facebook-child-abuse-images-bbc-investigation
источник
2017 March 08
TechSparks
Очень красивая работа, показывающая, как можно извлекать полезную информацию из нетривиальных данных - конечно, привлекая машинное обучение в процессе.
Команда ученых из нескольких американских университетов сначала научила сеточку различать марки автомашин (как это делает наше приложение для Auto.ru - уверенно решаемая задача), а потом эту сеточку пустили просматривать все Street View, определяя, в каких районах какие машинки запаркованы по всей Америке с точностью до квартала. В итоге удалось обучить программу определять демографию населения и даже партийные симпатии по спектру автомашин. Интуитивно понятно, что такая штука может работать, но вот довести её до инструмента - серьезное достижение. Ну и попутно красивые маркеры обнаружились ;))
https://arxiv.org/pdf/1702.06683.pdf
источник
2017 March 09
TechSparks
Сильно на любителя, но очень красиво: Фейсбук публикует в своём техническом блоге целую серию материалов про свои новые серверные решения: любителям компьютерных железок есть чем восхититься: https://code.facebook.com
Публикация приурочена к проходящему сейчас Open Compute Summit - похоже, эта инициатива (Open Compute Project, раскрытие идей и конструкций проприетарного железа, разрабатываемого в больших компаниях) прижилась http://www.opencompute.org/ocp-u.s.-summit-2017/
источник
TechSparks
Поиск картинок по загруженной картинке или по словесному названию объектов на изображении - уже почти привычная штука (хотя совсем недавно казалось магией). Спасибо машинному распознаванию изображений ;)
С видео до сих пор массового поиска по роликам не было: конечно, видео - это последовательность кадров, так что принципиально это те же картинки, но объемы! И, потом, в видео есть действия, а не только объекты.
И вот Гугл запускает, хотя пока еще в закрытой бете для корпоративных клиентов, а не для миллиардов пользователей, поиск по видео. И не по интернету, а по частным коллекциям видео, залитым в гугловое облако.
Как первый шаг - все равно очень круто, а фантазия вместе с логикой  подсказывают, что получающиеся автоматически аннотации происходящего на экране ох нехилый дадут в итоге инструмент поиска по кино и не только.
https://www.engadget.com/2017/03/08/google-can-use-machine-learning-to-identify-objects-in-videos/
источник
TechSparks
Сразу предупрежу - этот пост, несмотря на метку в URL ссылки, не заказная реклама (ее по-прежнему нет в @techsparks, не пишите с предложениями, не надо ;) ), а ответ на часто задаваемый мне после лекций вопрос: "Где учиться быть продактом онлайнового продукта?" Нетология сейчас дает конкретный ответ для готовых вложиться заметным объемом своего времени и своих денег, а Нетологию я в принципе очень уважаю, это в целом один из немногих достойных и серьезных образовательных проектов про нашу индустрию - на фоне массы шлака из курсов и семинаров, читаемых неведомо кем с единственной целью: на модных словах содрать денежку ни за что. И это нормальный очный процесс, а не всякие там вебинары ;)))
Ну и не случайно в курсе много менторов и преподавателей-яндексоидов (действующих и бывших), которых я ценю и люблю уже лично, и всячески рекомендую ;) Ох, как жизнь нас научила выращивать продактов, и ох как эти люди востребованы сейчас на рынке...
http://netology.ru/programs/product-lead?utm_source=infopartners&utm_medium=1316&utm_campaign=techsparks&stop=1
источник
2017 March 11
TechSparks
Кто-то ещё не поиграл с глазовращалкой? Насладитесь ;) Собственно, в очередной игрушке с нейронками меня впечатлил не столько хорошо подобранный узкий фокус задачи, сколько то, что даже журналисты научились видеть в приколах практическую пользу и придумывать для всех этих модифицированных реальностей хорошие применения. Вот и здесь: "теперь диктор может спокойно читать с суфлера, а в эфир уйдёт картинка, где он неотрывно и уверенно смотрит в камеру" ;) А уж как это пригодится для интервью и тестов по Скайпу ;)
http://www.theverge.com/2017/3/11/14885986/deepwarp-neural-networks-eye-rolling-keanu-reeves
источник
2017 March 12
TechSparks
Очень полезная и понятная статья с красивым названием "Квантовый скачок" - на языке, совершенно не требующем знания физики, рассказывает о ближайшем будущем квантовых технологий (про них говорят и пишут незаслуженно мало) - от сверхточного позиционирования (довольно критично для будущего беспилотного транспорта) до вычислений, для которых сейчас не хватает мощностей суперкомпьютеров или кластеров, имеющихся в распоряжении крупнейших компаний. Причём тех вычислений, от которых зависит, к примеру,  скорость появления новых лекарств и их эффективность. Очень поучительное чтение для тех, кто слышал о кончине закона Мура в связи с достижением предельной плотности транзисторов в привычных микросхемах. Как обычно, это просто означает, что появились новые технологии, у которых пределы иные ;) Оценка тех специалистов, кто квантовыми компьютерами занят: проблемы сейчас уже больше инженерные, чем научные; до промышленных образцов - около пяти лет.
http://www.economist.com/news/leaders/21718503-strangeness-quantum-realm-opens-up-exciting-new-technological-possibilities-quantum
источник
2017 March 13
TechSparks
Читаю отчёты с SXSW про дискуссии вокруг AI, и как-то скучновато они выглядят, что странно. Ведь всего несколько дней назад была опубликована, к примеру, увлекательнейшая статья про сотрудничество людей и машин в дизайне и архитектуре. И вот там есть чем насладиться: ссылку стоит открыть хотя бы ради того, чтоб взглянуть на картинку, где Autodesk'овский машинный интеллект занят изобретением велосипеда. В прямом смысле: он придумывает новые конструкции велосипедной рамы. И некоторые варианты прямо хороши! ;)
Мне очень нравится этот набирающий популярность подход - вместо дешёвой журналистской дискуссии кто кого - заинтересованное обсуждение того, как эффективнее и выгоднее сотрудничать и как научиться вместе продуктивно работать.
http://archinect.stfi.re/features/article/149995618/the-architecture-of-artificial-intelligence?sf=rykpxxz#aa
источник
2017 March 14
TechSparks
Я люблю заканчивать свои лекции слайдом с известным законом Кларка: «Если пожилой эксперт утверждает, что чего-то никогда не случится, он, скорее всего, ошибается». Память об этом утверждении помогает воздерживаться от консервативного брюзжания и негативных прогнозов :) И рассказывать только о том, что,  как я верю, состоится.
Вот хорошая иллюстрация того, почему поаккуратнее надо быть с негативными прогнозами из оперы «Этого никогда не будет». 22 года назад известный ученый-астроном, преподаватель и педагог (явно позабывший закон Кларка) выступил с большой статьей про то, как интернет не станет ничем полезным, про базы данных, которые никогда не заменят ежедневные газеты, про компьютерных гиков, которые приписывают компьютерам способности, которых у них никогда не будет - ну ведь не будет же компьютера, который можно взять с собой на пляж!
Почитайте, там чудесно про прогнозы :) А по прочтении не забудьте себя уверить, что никогда компьютер не сможет делать вашу работу лучше вас, быть вашим детям интереснее и полезнее вас, и уж точно никогда не научится думать и творить :)
http://europe.newsweek.com/clifford-stoll-said-internet-would-die-1995-566797?rm=eu
источник
2017 March 15
TechSparks
К McKinsey у меня отношение разное, но в области оценок машинного обучения я их уважаю за политкорректный формулировку аж от 2015 года: "использование людей в цепи принятия решений становится все более непрактичным благодаря успехам и скорости развития машинного обучения". Непрактичность - это такой же прекрасный эвфемизм как mentally challenged - для описания тупого мудака ;)
Теперь эти ребята продвигают новый термин - IPA, intelligent process automation, - коктейль разных технологий, который минимизирует присутствие человека в бизнес-процессах и несёт % ROI на уровне трехзначных цифр.
Мне нравится этот способ продать стек технологий машинного обучения консервативному индустриальному бизнесу. А уж что-что, а продавать эти дорогие консалтеры умеют.  
http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/intelligent-process-automation-the-engine-at-the-core-of-the-next-generation-operating-model
источник
TechSparks
Чтоб не скучали, вот вам ссылочка, где можно поиграть с картинками (например, со своими фотками - и узнать грустную правду о том, что не все они - истинные шедевры мирового фотоискусства :)) Это очередной стартап, использующий машинный интеллект для распознавания изображений - причем с практичной целью: искать нужные картинки по стокам. Собственный поиск по стоковым архивам + тамошнее тегирование, надо признать, никуда не годятся; кто пробовал, тот помнит. Так что идея вполне ОК.
Заодно можно помочь ребятам немного улучшить представление их алгоритма о красоте: если несогласны с полученной оценкой, шлите им скриншоты и свое мнение.
Вот страничка загрузки, распознавания и оценки фото: https://everypixel.com/aesthetics
Login: real
Password: beauty
А обратную связь они собирают здесь (@klipfel) или в почте (hello@everypixel.com)
источник
2017 March 16
TechSparks
Я в полном восторге от задумки эксперимента: создать простой виртуальный мир и запустить туда ботов, которым даются простые задания типа достижения определенной точки. Боты, понятное дело, самообучающиеся, но наделены интересной особенностью: они могут обмениваться друг с другом сигналами, но у них нет заранее заданного языка, который придавал бы сигналам смысл. В процессе самообучения боты выясняют, что достигают поставленных целей быстрее, если пользуются подсказками друг друга. А чтобы подсказки действительно помогали, им приходится научиться - опять же самим - придавать смысл каким-то символам, чтобы они сообщали партнерам простейшие концепции. Фактически, изобрести язык.
Понятно, что пока это простейшие истории самозарождения языка, символьной системы, причем язык этот на уровне языка каких-нибудь муравьев или пчел.
Но лиха беда начало - очень скоро начнем узнавать много интересного из области эволюции языка в разных условиях.
http://www.access-ai.com/articles/bots-create-their-own-language-have-conversations-we-can’t-understand
источник
2017 March 17
TechSparks
Некоторые велосезон уже открыли, я готовлюсь - и тут новость в тему. Всякими экзотическими электровелами уже никого не удивишь. Но вот ребята из UrbanX смогли впечатлить своим проектом на Кикстартере. Они предлагают электроколесо: в нем и 240-ваттный мотор, и аккумулятор, и вся необходимая механика и электроника. Так что можно жить с любимой рамой, седлом и вообще всем обвесом - ты просто меняешь переднее колесо (дело нескольких минут), на руль устанавливаешь управление электромотором - и можно ехать. Конечно, параметры не рекордны для электробайков. Но достаточны для городских покатушек даже по холмистой местности. Хочется попробовать этот хайтек в деле! ;) в частности, интересуют меня ощущения от колеса с такой нехилый массой.
http://www.geeky-gadgets.com/urbanx-electric-bike-wheel-16-03-2017/
источник
2017 March 20
TechSparks
Vic Gundotra, когда-то один из очень популярных руководителей Google, отец и евангелист G+, как-то исчез с радаров после ухода из Гугла. Но вот новость крутая и сама по себе, и тем, что показывает, к чему сейчас свой немалый талант прикладывает Vic (вместе с командой прочих ex-Googlers).
Представленный еще несколько лет назад портативный приборчик Kardia от компании AliveCor вдруг резко прибавил в полезности (в возможности отслеживать ранние предвестники серьезных проблем с сердцем, в первую очередь - инфарктов). Как нынче принято, все дело в машинном обучении и нейронных сеточках, которые позволяют в целом ряде случаев не снимать ЭКГ со всех 12 отведений, а ограничиться парой (что сразу делает прибор простым и карманным). При этом в течение некоторого времени сеть еще и дообучается для каждого пользователя прибора, так чтобы суметь выявить возникающие отклонения о типичной картины электрической активности, а не только общие признаки известных заболеваний. И да, для некоторых симптомов уже получен сертификат FDA.
Почитайте детали по ссылке: рассказано простым языком и очень наглядно показывает, как машинное обучение и карманные устройства уже начинают спасать жизни - и будут это делать все более массово уже завтра.
https://www.wired.com/2017/03/alivecor-kardia/
источник
TechSparks
Выглядит действительно немножко фантастикой наяву: один из богатейших людей планеты, чьи компании крушат традиционный ритейл, покушаются на космические полеты и хостят в своих облаках массу сервисов, которые мы любим, забрался в кабину четырехметрового робота и восторженно размахивает его могучими стальными лапами. Чисто кадр из "Аватара".
Ну, или Джефф Безос на выставке-конференции для своих со звучным именем MARS (Machine learning, Automation, Robotics, Space) тестирует корейского робота Method-2.
http://www.theverge.com/2017/3/20/14979620/jeff-bezos-robot-method-2-mars2017-conference
источник
2017 March 21
TechSparks
Ссылка совсем не для технарей, ну так и читают меня не только они ;)
Это я недавно дал интервью "Теплице", интервьюерша реально была сильно встревожена, что умные роботы испортят ей будущее. Поэтому получилось простенько, оптимистичненько и с лейтмотивом "не надо их бояться, надо учиться их правильно готовить" ;)
https://te-st.ru/2017/03/20/interview-with-andrei-sebrant-about-machine-learning/
источник
2017 March 22
TechSparks
Внешне это устройство напоминает диктофон, но так его обозвать - значит унизить. Хотя функционально это изделие Филипса действительно типичный диктофон, заточено оно под высококачественную запись музыки. Поэтому и диапазон 20 - 20000 Гц, и оцифровка 24 bit/96 kHz, и дополнительные line-in разъемы. Удивительно, конечно, как миниатюризация докатилась до оборудования почти студийного, для которого традиционно габариты, вес и объём считались символами качества. К камерам компактного формата, обеспечивающим видео совершенно профессионального качества, я уже привык, но вот такое устройство звукозаписи порадовало.
http://www.theverge.com/circuitbreaker/2017/3/21/14998866/philips-voicetracer-dvt7500-audio-recorder-microphones
источник