Size: a a a

2017 February 15
TechSparks
Не так давно промелькнула новость, что Гугл продал свой бизнес спутниковых фотографий. Но за громким именем Гугла мало кто обратил внимание на покупателя. А компания Planet, между тем, крупнейший в мире поставщик спутниковых снимков -  её спутниковый флот исчисляется десятками. Хотя каждый из них невелик и не может соперничать с могучими аппаратами, которые запускают государственные агентства (и, прежде всего, военные) - благодаря количеству Planet имеет самое высокое суточное покрытие поверхности Земли. А сегодня (в среду) утром на орбиту вывели ещё несколько десятков спутников (между прочим, из Индии).
Разглядывая миниатюрные спутники этой частной компании, удивительно вспоминать, что ещё на моей памяти было время, когда самолеты-шпионы запускали, чтоб сфоткать чужую территорию сверху. А кто сейчас вспомнит Пауэрса и U-2? ;)
https://www.wired.com/2017/02/88-tiny-satellites-will-watch-time-everywhere/
источник
TechSparks
Желающим посмотреть-послушать про практические кейсы использования машинного обучения в отечественном бизнесе - завтра у нас в Яндексе я веду конференцию на эту тему. Традиционно будет трансляция - включайтесь. Начало - в 10:30 по Москве 16 февраля.
https://events.yandex.ru/events/b-konf/16-feb-2017/
источник
TechSparks
В продолжение утреннего поста про запуск спутников: Гриша @bobuk добавил интересную деталь:
часть этих спутников делает российская (московская) компания Спутникс
https://vk.com/wall-49343931_517
источник
2017 February 16
TechSparks
Вот очень правильная идея: in-car payments. Если задуматься - ведь правда странно, что на заправке часто надо не просто вылезать из машины, а ещё куда-то идти, только чтобы оплатить топливо. Причём если заправка с сервисом, то пистолет и без тебя вставят бак, а потом вынут и лючок закроют - но все равно ты ножками пойдёшь платить
Так что идея о том, что твои часы или телефон могут договориться с приложением в машине, а оно, в свою очередь, с колонкой - хороша. Ну, а дальше все подряд: платные парковки, платные дороги и т.д.  Почему я должен заморачиваться и искать паркомат? Пусть машинка сможет сама договариваться с окружающим миром, я доверю ей расплачиваться ;)
https://techcrunch.com/2017/02/14/jaguar-launches-in-car-payments-at-shell-gas-stations/
источник
2017 February 17
TechSparks
Субъективный, как любые рейтинги, список самых инновационных компаний по версии FastCompany все равно полезно изучить. Причем, как всегда в таких рейтингах, наибольший интерес представляет не сам список, а всякие сравнения  и наблюдения. Например, что первое место в общем зачете не у великих компаний чисто про интернет, типа Гугла и Фейсбука, а у Амазона - компании, в которой материальная составляющая бизнеса велика, и которая меняет мир физической торговли. Или что в разделе Data Science на первом месте Netflix и в десятке присутствует вполне традиционное медиа The Guardian, правильно освоившее работу с данными в журналистике.
Вообще самые любопытные и наводящие на размышления списки - как раз секторальные.
https://www.fastcompany.com/most-innovative-companies/2017
источник
2017 February 18
TechSparks
Цукерберг на днях заявил о новой формулировке миссии Фейсбука: теперь на него возлагается задача "построить социальную инфраструктуру для объединения человечества". Традиционная нейтральность, которой много лет гордились технологические компании (мы даём инструменты, но вы сами решаете, что с их помощью делать), потихоньку уступает место конкретной жизненной позиции и набору ценностей, которые сервис, обслуживающий 1.8 миллиарда пользователей, будет встраивать в свои продукты. Казалось бы, прекрасно, что технологический глобальный продукт теперь будет пропагандировать и поддерживать гуманистические ценности. Но почему мне все время вспоминается, из чего сделано дорожное покрытие трассы, ведущей в посмертное пекло? ;)
В интервью по ссылке - развёрнутые ответы Цукерберга о том, как он видит роль Фейсбука в активном преобразовании мира в правильном (по его мнению) направлении. (Ах, да, конечно же, всё будет достигнуто силами искусственного интеллекта.)
https://www.buzzfeed.com/alexkantrowitz/we-talked-to-mark-zuckerberg-about-globalism-protecting-user?utm_term=.pbjkZXvnp#.sgRXQo3Y7
источник
TechSparks
Нашёл картинки, которые неплохо иллюстрируют проблему неинтепретируемости того, что происходит внутри искусственной нейронной сети в процессе её обучения: инженеры из Graphcore построили картинки активности узлов сети и связей между ними в процессе обучения сетки распознаванию образов. Картинки не только напоминают те, которые получаются при исследовании биологических объектов, но и структурно очень нетривиальны. Учитывая, что каждая из них - лишь мгновенная фиксация непрерывно меняющегося самоуправляемого процесса, становится понятней, почему вопрос "а как она это делает?" ставит исследователей в тупик.
Ну и, в конце-то концов, - это просто красиво, и можно разглядывать не задумываясь о том, что там изображено. Так даже как-то спокойней ;)
http://www.wired.co.uk/gallery/machine-learning-graphcore-pictures-inside-ai
источник
2017 February 19
TechSparks
Нам непросто узнавать в лицо азиатов или африканцев, а им - европеоидных белых: наши системы распознавания лиц натренированы в той среде, где мы росли, и для решения новых задач требуют дообучения. С животными - ещё хуже: узнавать в лицо всех овчарок - тяжко даже для кинолога.
А задача не игрушечная: для сохранения редких видов хорошо бы иметь мониторинг не просто на уровне численности - а на уровне особей. Но глазами мы этого не можем. Конечно, можно чипировать, кольцевать и т.п. - но это все выборочные методы идентификации.
Как вы уже догадались - на помощь спешат системы распознавания морд, выросшие из систем распознавания наших лиц. Вот статья про LemurFaceID, систему распознавания конкретных лемуров по фото, работающая с точностью выше 98%. Зоологи и экологи воодушевлены и прочат большое будущее этой технологии и её расширению на другие виды животных. Хорошо, что пока среди защитников животных не зародилось движение защиты их privacy. Представляете, что будет, если примут закон о необходимости размытия котиков на фото??
http://www.theverge.com/2017/2/17/14647168/facial-recognition-software-lemurs-conservation
источник
2017 February 20
TechSparks
Прекрасная заметка на Medium, спасибо Василию @flreln, ведущему канал @techcube за ссылку. Не все из моих читателей прорвутся через технические детали, но алармисты должны напрячься уже от первой строчки текста: "Potentially describing how general artificial intelligence will look like."  И идея красива: давайте построим нейронную сеть, каждым из элементов которой является нейронная сеть (действительно, зачем задавать или подбирать правила работы каждого элемента, пусть сам научится). Такой подход применили к важнейшему классу задач: к переносу обучения, т.е. к способности сеточки использовать однажды наработанные навыки, стратегии, решения для новой задачи. Мы так умеем, и это полезно. Теперь, как показано в работе, умеют и нейронки.
Кстати, подход "сеть сетей" допускает произвольный уровень вложенности, и там поведение может стать намного интереснее ;))
https://medium.com/@thoszymkowiak/deepmind-just-published-a-mind-blowing-paper-pathnet-f72b1ed38d46#.mbuk5e2fs
источник
2017 February 22
TechSparks
Впереди длинные выходные, кое-кто проведёт их в городах, где погода не очень гулятельная, но в самый раз для чтения. Да и вообще очень часто, особенно после лекций в институтах, меня спрашивают, что почитать (на разный уровень подготовки) про data science, машинное обучение и вокруг.
Поэтому сегодня не новость, а ссылка на подборку, которую мне Аня @Anna_Boo подсказала: целых сто бесплатных книг вокруг data science. Да, на английском, но, простите, если уж полез в эту область - будь готов на английском читать.
Так что правильного вам выбора и хорошего чтения - на выходные и не только! ;)
http://www.learndatasci.com/free-data-science-books/
источник
2017 February 23
TechSparks
Пока уникальный прототип, но дальше дело за промышленностью: университетские ученые своё дело сделали. В Стенфорде создали вживляемый в мозг микрочип с сотней тончайших электродов, собирающий сигналы из объёма моторной коры. Ну и, конечно, софт для обработки этих сигналов.
Результат - в высшей степени практичный для людей с полным параличом  конечностей (а таких только в Штатах около миллиона; это не только жертвы разных заболеваний, но и пережившие тяжёлые травмы позвоночника): они могут чисто силой мысли гонять курсор по экранной клавиатуре и нажимать нужные буквы. Скорость печати - несколько слов в минуту. Для парализованных это практически новый полноценный канал коммуникации и творчества. Простите, меня почему-то эта новость впечатлила сильнее, чем про три планеты. ;)
http://med.stanford.edu/news/all-news/2017/02/brain-computer-interface-allows-fast-accurate-typing-by-people-with-paralysis.html
источник
2017 February 24
TechSparks
Обычно после лекций часть слушателей остаётся позадавать вопросы, что-то рассказать или просто поспорить. Если лекция про машинный интеллект для студентов, причём разных специальностей, то периодически возникает такой сценарий: не изучающие программирование волнуются, надо ли срочно учиться программировать, а изучающие и при этом ещё и немного думающие, волнуются, когда и что машина вместо них станет программировать.
Вот начало ответа: Microsoft и University of Cambridge представили систему Deep Coder на основе AI. Область её деятельности тактично названа "синтез программ", а не их написание: Deep Coder не пишет код с нуля, а, узнав, какую задачу должна решать программа, комбинирует из уже известного кода (т.е. из всех известных программ) работоспособную программу. Авторы мягко замечают, что программисты подчас занимаются примерно тем же, а их система знает гораздо больше исходников и умеет по ним искать намного лучше и быстрее человека.
Ну, лиха беда начало ;)
https://www.newscientist.com/article/mg23331144-500-ai-learns-to-write-its-own-code-by-stealing-from-other-programs/
источник
2017 February 25
TechSparks
Разговоры про технологии, которые лишат людей работы (роботы механические и программные) обычно окрашены в тревожные тона, а в случаях эмоциональных собеседников дело чуть ли не до паники доходит. И любители технопрогресса начинают утешать испуганных друзей тем, что какая-то работа им найдётся. Сам этим иногда занимаюсь ;)
Но вот мне попалась на глаза очень логичная заметка, в которой рассмотрен сценарий ликвидации рабочих мест совсем с другой точки зрения. И психологически это очень красиво. Вообще-то социальный прогресс связан как раз с сокращением рабочей недели. И людей это по большей части радует. И тогда возникает интересная перспектива: если потихоньку снижать рабочее время, не снижая доходы, то люди это примут, и большинство ещё скажет спасибо. И тогда такой плавный переход к гарантированному доходу совершенно не грозит теми потрясениями, которыми пугают при одномоментном лишении людей работы. Хотя конечное состояние занятости в обществе то же самое.
Красивый, однако, сценарий. Как все-таки рулит психология и учёт особенностей восприятия (и привыкания).
http://bigthink.com/natalie-shoemaker/working-less-rather-than-being-workless
источник
TechSparks
Публикация прошлогодняя, но как-то я пропустил эту красоту. Со времён после Второй Мировой в Лос-Аламосе (где создавали атомную бомбу)физики учились рассчитывать серьёзные взрывы: атомные и термоядерные, результаты лазерных атак и прочие зрелищные события. В моделировании и расчетах они добились колоссальных успехов, но большая часть их работы секретна и на публике её не покажешь. Приходится придумывать что-нибудь невоенное, но энергонасыщенное - чтобы посчитать и показать миру. Вот недавно они озадачились: бОльшая часть поверхности Земли покрыта водой, но почему-то и Голливуд, и многие модели описывают падение астероида на сушу. А ведь у него несколько больше шансов угодить в океан. Что при этом произойдёт? Оказалось, все довольно интересно: астероид диаметром несколько сот метров может испарить при падении в океан сотни мегатонн воды - и этот пар, если его столб достигнет стратосферы, может обеспечить мощный парниковый эффект. Волны на воде, в отличие от кино, оказываются опасны только в случае падения у берега; если столкновение далеко, волны быстро затухнут. Другие интересные подробности и красивая анимация - в пятиминутном ролике в статье по ссылке.
http://gizmodo.com/heres-what-would-happen-if-a-giant-asteroid-struck-the-1790084340
источник
2017 February 26
TechSparks
Ещё одна отличная публикация - спасибо Юлии, что нашла и поделилась, я-то пропустил. Очень поучительная медицинская история. Хороший настоящий врач, как известно, часто может поставить диагноз ещё до всяких анализов и обследований: взглянув на больного, послушав его, он уже знает, что с ним, а вся дальнейшая диагностическая наука лишь подтверждает объективными данными догадки и интуицию врача. Ну и, понятно, когда речь заходит о машинном обучении, защитники традиций это вспоминают и начинают рассказывать про то, что алгоритм не заменит все эти догадки и интуицию. А те, кто в ML верит, вспоминают про го, покер и прочие истории про нечеловеческую чуйку машин.
Так вот, по ссылке текст о том, как просто анализ голоса, записываемого смартфоном, помогает при диагностике и психических расстройств, и кардиологических проблем. Именно голоса, а не смысла слов, что важно, - речь о том, как машина учится невербалке. Интересно, что один из кардиологов утверждает: особенности голоса, коррелирующие с высоким риском коронарной недостаточности, неразличимы человеком, но ловятся софтом при записи голоса.
Там ещё много интересного про близкое будущее медицинской диагностики ;)
https://www.technologyreview.com/s/603200/voice-analysis-tech-could-diagnose-disease/
источник
2017 February 27
TechSparks
Не так давно Билл Гейтс выступил с заявлением, которое восторженно подхватили в прессе и блогах и на Западе, и у нас: «Давайте введем специальный налог на роботов, которые у людей отбирают рабочие места!» Я немного изумился, потому что это популистское заявление сразу вызывало в памяти закон Менкина «для каждой проблемы существует простое, очевидное - и ошибочное - решение». Но поскольку я ничего в экономике не понимаю, никуда с этим мнением не полез.
Поэтому приятно, что The Economist выступил со статьей, где экономисты разбираются, в чем ошибка Гейтса. Там разные аспекты рассматривают: и то, что инвестиции в основной капитал крайне странно облагать налогом, и то, что налоги - не лучший способ перераспределять деньги в пользу обездоленных прогрессом работников. Мне понравился пример: водитель грузовика им владеет или его арендует, и зарабатывает, крутя баранку. Так пусть он владеет или арендует беспилотный грузовик - и зарабатывает те же деньги, не вставая с дивана.
Вот действительно - люди же сдают недвижимость, и получают иногда неплохой доход, не делая ничего. Если им дать умные машины - класс таких рантье расширится, и хотя бы для них не потребуется госпрограмма гарантированного дохода.  
Всё как всегда: мир устроен чуть сложнее, чем кажется на первый взгляд с дивана.
http://www.economist.com/news/finance-and-economics/21717374-bill-gatess-proposal-revealing-about-challenge-automation-poses-why-taxing?cid1=cust/ednew/n/bl/n/20170223n/owned/n/n/nwl/n/n/E/8947035/n
источник
TechSparks
Аж странно было, что последнее время мало что слышно (если не считать предвыборной прикольной президентской кампании Золтана Иштвана в США)  от и про трансгуманистов: вроде бы шум вокруг машинного интеллекта и всяких нейроинтерфейсов должен быть для этих ребят питательной средой.
Но вот новость: сегодня в свет выходит книга To Be A Machine - журналистское изучение мира трансгуманистов.
Не уверен, что сам ее буду читать, но кому-то мир людей, всерьез мечтающих стать киборгами или загрузить себя в облако может быть интересен. Они считают, что наш интерес к собственному организму и вообще телесности - это всего лишь стокгольмский синдром людей, оказавшихся в заложниках у недолговечной и довольно непрочной органической оболочки. При всей странности такого взгляда, в нем есть своя логика технологической утопии - а многое утопическое нынче нежданно превращается в обыденность.
http://www.theverge.com/2017/2/25/14730958/transhumanism-mark-oconnell-interview-cyborg-hacker-futurist-biohackers
источник
2017 February 28
TechSparks
Милая игрушка - и действительно позволяет начать привыкать к чудному новому миру: как всегда, лучше всего привыкать к новому играючи :)
источник
TechSparks
Нашёл забавную игрушку в браузере, которая наглядно показывает работу AI в самоуправляемых автомобилях. Это 2D пространство с двумя машинками и блоками, которые они успешно (или нет) объезжают. Машинками управляет нейросеть и правила, что движение вперёд это хорошо, а врезаться в стены — плохо. Для навигации используются 19 сенсоров, имитирующих технологию LIDAR, которую гугл и убер используют для своих беспилотных автомобилей, только сенсоров у них побольше. А ещё там можно дорисовывать блоки прямо на дороге машинки, и создавать им ощутимые проблемы :) Попробуйте, выглядит интересно. Самое главное, народ начинает привыкать к тому, что этого не избежать и вопрос "если" касательно self-driving cars уже превратился в "когда".
http://janhuenermann.com/projects/learning-to-drive
источник
TechSparks
Продолжая тему машинок: у гонок самоуправляемых машин - очень неплохие перспективы. Их конструкторы и дизайнеры тоже воодушевлены: когда болид не обязан соответствовать строгим правилам безопасности, охраняющим находящегося внутри гонщика, можно очень многое себе позволить и с точки зрения форм, и с точки зрения стиля вождения.
Но сначала машинку надо научить гоняться, и поэтому учебный болид содержит в себе место для пилота. Вспоминаются двухместные учебные самолеты с местами для инструктора и ученика - только здесь ученику не надо сиденья и руля.
Организаторы гонок полагают, что со временем и правила начнут эволюционировать: на трассе будут создаваться специальные препятствия, чтобы мозгам машинки и зрителям было не скучно. Отсутствие человека в машине позволит превратить гонку в рискованное испытание.
В статье по ссылке красивая картинка и ролик - стоит взглянуть, даже если лень читать
https://www.wired.com/2017/02/meet-self-driving-car-built-human-free-racing/
источник