D
Size: a a a
D
FZ
VB
VE
VE
VB
OT
OT
OT
AD
DT
OT
FZ
params = {
'iterations': 200,
'random_seed': 42,
'eval_metric': 'AUC',
'allow_writing_files': False,
'logging_level': 'Verbose'
}
clf = CatBoostClassifier(**params)
clf.fit(pool,
use_best_model=True,
eval_set=[
pool,
Pool(x_validation, label=y_validation),
]
)
pred = clf.predict(x_validation)
score = roc_auc_score(y_validation, pred)
print("validation score {}".format(score))
FZ
DK
FZ
DK
OT
AD
OT