P
Size: a a a
P
AZ
P
AZ
AZ
filter (>10) . map \x -> x + 5 $ [1,2,3]
понятнееS
NL
if inputs.get_shape().ndims == 2:
result = tf.matmul(inputs, weight)
else:
reshaped_inputs = tf.reshape(inputs, [-1, input_dim])
result = tf.matmul(reshaped_inputs, weight)
result = tf.reshape(result, tf.pack(tf.unpack(tf.shape(inputs))[:-1] + [output_dim]))
if biases:
result = tf.nn.bias_add(
result,
lib.param(
name + '.b',
np.zeros((output_dim,), dtype='float32')
)
)
return result
AZ
S
S
S
P
G
[ x+5 | x <- [1, 2, 3], x>10, ]
S
AZ
[x | x <- x + 1 | x <- [1,2,3], x > 10]
S
if inputs.get_shape().ndims == 2:
result = tf.matmul(inputs, weight)
else:
reshaped_inputs = tf.reshape(inputs, [-1, input_dim])
result = tf.matmul(reshaped_inputs, weight)
result = tf.reshape(result, tf.pack(tf.unpack(tf.shape(inputs))[:-1] + [output_dim]))
if biases:
result = tf.nn.bias_add(
result,
lib.param(
name + '.b',
np.zeros((output_dim,), dtype='float32')
)
)
return result
AZ
[ x+5 | x <- [1, 2, 3], x>10, ]
P
AZ
S