На картинке лишь малая часть инструментов за 2020 год для работы с данными. "Растут как грибы" - это реально про них. Да еще и мой прошлый пост про 0 ROI от внедрения аналитического решения. Так же без него тоже никуда, поэтому народ время не теряет и пилит свой "табло" или "аирфло" или еще чего-нибудь, что хорошо стрельнуло.
Проблема тут, что из-за такого обилия инструментов, новичок просто утонет и никогда не найдет выхода из лабиринта иснтрументов. Если 10 лет назад было по 3 инструмента в каждой категории, а категорий было максимум 5, то теперь просто "жопа". Одно из преимуществ datalearn для меня, что я хочу сделать такой мостик между сегодняшним хаусом инструментов и пониманием основ. Но я не про datalearn сейчас.
Сегодня попался еще один интересный пост, про
What is the right level of specialization? For data teams and anyone else. идея в том, что "Specialization is probably driven a lot by bad tools", и если раньше было несколько специализаций, то сегодня их расползлось. Теперь стало сложно понять какой специалист нужен, какие требования, что учить, что писать в описание вакансии и тп. Часто это опять же набор - tools.
Так что если вы знаете и понимаете основы, то вы справитесь с любым tool, а если вы учите tool ради специализации, то вы идете по ложному пути. А как вы думаете?