Ресурсы для изучения:
AWS Cloud Practitioner Essentials
Data Analytics Fundamentals
Amazon Redshift - Getting Started Guide
Azure Fundamentals part 1: Describe core Azure concepts
Azure Fundamentals part 2: Describe core Azure services
Azure Fundamentals part 3: Describe core solutions and management tools on Azure
Data Engineering, Big Data, and Machine Learning on GCP
Серия постов по Google BigQuery
2.
Работа с orchestration tools (или на русском - оркестраторами). Оркестратор - это инструмент, который позволяет объединить все наши этапы по извлечению, трансформации и загрузке данных в единую логическую цепочку, в единый data-пайплайн, чтобы весь ETL-процесс работал слаженно и бесперебойно. Такими инструментами могут выступать:
1) Специализированные решения для оркестрации по типу Apache Airflow, Apache NiFi или Luigi.
2) Готовые ETL-инструменты, такие как AWS Glue, Azure Data Factory, Google Cloud Dataflow, Matillion ETL, Fivetran и др.
Также возможности оркестрации есть в таком инструменте, как Data Build Tool (dbt), но этот инструмент предназначен только для трансформаций данных внутри хранилища данных. Т.е. в ETL он делает T - transform. За E - extract и L - load этот инструмент не отвечает.
Какой из этих инструментов учить зависит, опять-таки, от многих факторов: популярности отдельных инструментов в вашей стране, компании, в которой вы хотите работать, какого-то личного видения и т.д.
Лично я сейчас активно работаю с dbt и решения по типу Apache Airflow ещё не доводилось использовать. Но у меня у самого есть желание хорошо выучить какой-то инструмент для оркестрации всего ETL-процесса и, скорее всего, это будет Airflow, так это решение гибкое - оно не ограничивает вас каким-то одним вендором (как, например, Amazon Glue или Azure Data Factory) и позволяет использовать DevOps-практики. Вы можете развернуть его на локальном сервере или на любом облаке. Но, опять же, повторюсь, всё зависит от многих факторов и тут нужно выбрать инструмент, подходящий конкретно вам. Сразу все инструменты учить нет смысла - достаточно знать один.
3.
Spark. Теперь переходим к Big Data. Когда вы работаете уже с очень большими объёмами данных, стандартных решений может быть недостаточно, и вы прибегаете к технологиям параллельной обработки больших массивов данных. Одной из таких технологий является Spark. Так как вы до этого учили Python, то и учить Spark я вам рекомендую, используя уже знакомый вам синтаксис. Этот фреймворк называется PySpark (использовать возможности Spark можно также, программируя на Java или Scala). Хорошим вариантом для изучения PySpark будет использование Databricks Community Edition. Он бесплатный, и там вы можете сразу запускать свой код на PySpark. В общем, очень удобно.
Ресурсы для изучения:
Introduction to PySpark
Big Data Fundamentals with PySpark
Cleaning Data with PySpark
Databricks Community Edition
В принципе, это основные навыки, которые нужны будут вам, чтобы шагнуть на новую ступеньку в развитии вас как data-инженера.
Здесь я не упомянул экосистему Hadoop и сделал это намеренно, так как считаю, что Hadoop - это больше legacy-штука и, со временем, его будут использовать всё реже и реже. Сейчас основной тренд в построении аналитической инфраструктуры направлен на облачные технологии. Это можно увидеть по большому количеству проектов, связанных с миграцией аналитики из on-premise в cloud. В принципе возможности Hadoop можно использовать и в облаке, но не совсем понимаю зачем, если, например, HDFS можно полностью заменить AWS S3, Cloud Storage или Delta Lake, а Hive или Impala - Redshift Spectrum или Google BigQuery.
В общем, я топлю за путь изучения с погружением в Cloud, но вы можете быть со мной не согласны.
После изучения вышеперечисленных технологий и применения их в коммерческих проектах, можно пойти дальше и начать изучать DevOps для data-инжиниринга. В принципе у вас уже есть некоторые знания DevOps-инженера - вы уже изучили Linux и командную строку, Git, Docker и это очень неплохой бекграунд. Теперь можно двигаться дальше и разобраться с более сложными штуками: