Очень долгое время я особо не углублялся в Python, использовал его постолько посколько для Spark (PySpark), для ELT/ETL и для задач data quality.
Вчера я пообщался с VP Sales
plotly. Это Канадская компания, у которой есть 2 opensource решения (библиотека визуализаций plotly и Dash - фреймворк для аналитического решения). Монетизация через Enterprise Dash. То есть условная компания, у которой уже есть Tableau/PowerBI или любой другой традиционный инструмент, платформа данных, уперлась в своем развитие. Лицензии на BI продукты дорогие, data scientist не могу правильно презентовать свою работу, но они отлично знаю Python и они создают BI решение с элементами BI/AI/ML полностью кастомизированное. То есть такая эволюция от традиционных BI решений к Аналитическим кастомизированным решениям.
VP Sales был Country Manager Tableau в Канаде и создавал Sales процессы в Канаде. После того как SalesForce поглотил Tableau, многие вещи испортились и он присоединился к этой компании. Мы с ним относительно хорошо общаемся, и решили попробовать посотрудничать. Я сам никогда не создавал web аналитические решения, так что обложился книгами по python и попробую что-нибудь сделать. Возможно это новая ниша и новый рынок, на котором не высокая конкуренция. Все эти решения работают в облаке (AWS/Azure/GCP) и берут данные из data platforms, так что интересно будет проверить эту гипотезу.
PS Самый популярные библиотеки python для анализа данных:
NumPy (Numerical Python) - библиотека для работы с массивом данных, линейной алгебры и прочей матемтиматики
Pandas (произошел от panel data, термин в эконометрике для многомерных структур)- библиотека для работы со структурированными данными через DataFrame (таблица). В нем мы можем трансформировать наши данные.
matplotlib - библиотека для создание графиков и 2х мерной визуализации.
IPython - продвинутая среда для Python
SciPy - набор пакетов для наукоемких вычислений. Вместе NumPy и SciPy заменяют MATLAB (ну почти).
scikit-learn - библиотека для ML
statsmodels - статистический пакет
А вам достаточно коробочного BI решения или вы пошли дальше и внедряете custom решение на R/Python?