MK
Size: a a a
MK
AM
KA
MK
KA
KA
MK
MK
KA
MK
KA
import torch
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
def prepare_samplers(set, val_size,test_size, shuffle = True):
dataset_size = len(set)
indices = list(range(dataset_size))
split_ts = int(np.floor(test_size * dataset_size))
split_val = int(np.floor(split_ts+ val_size * (dataset_size)))
if shuffle:
np.random.shuffle(indices)
test_indices, val_indices, train_indices = indices[:split_ts], indices[split_ts:split_val], indices[split_val:]
return SubsetRandomSampler(train_indices), SubsetRandomSampler(val_indices), SubsetRandomSampler(test_indices)
input_size = 28
test_size = 0.2
val_size = 0.1
dataset = SampleDataset(path, input_size)
tr_sampler, val_sampler, ts_sampler = prepare_samplers(dataset, val_size, test_size, shuffle=False)
test_loader = DataLoader(dataset = dataset, batch_size=batch_size, sampler=ts_sampler)
val_loader = DataLoader(dataset = dataset, batch_size = batch_size, sampler=val_sampler)
train_loader = DataLoader(dataset=dataset, batch_size = batch_size, sampler=tr_sampler)
KA
MK
KA
MK
KA
KA
MK
KA