А вот совсем не праздный вопрос: почему ваш антифишинг не детектирует фишинговые сайты и как Data Science заставит его работать?
В России, по нашим оценкам, действует 15 преступных групп, занимающихся фишингом, направленным на финансовые учреждения. Суммы ущерба всегда небольшие (в десятки раз меньше, чем от банковских троянов), но количество жертв, которые они заманивают на свои сайты, ежедневно исчисляется тысячами. Около 10–15% посетителей финансовых фишинговых сайтов сами вводят свои данные.
При появлении фишинговой страницы счет идет на часы, а иногда даже на минуты, поскольку пользователи несут серьезный финансовый, а в случае компаний — еще и репутационный ущерб. Например, некоторые успешные фишинговые страницы были доступны менее суток, но смогли нанести ущерб на суммы от 1 000 000 рублей.
Ресурсы, «подозреваемые» в фишинге, можно легко детектировать с помощью различных технических средств: honeypots, краулеров и т.д., однако убедиться в том, что они действительно фишинговые, и определить атакуемый бренд проблематично.
В этой статье Павел Слипенчук, архитектор систем машинного обучения, Group-IB, рассказывает о том, как эффективно детектировать фишинговые сайты с помощью анализа ресурсов (изображений CSS, JS и т.д.), а не HTML, и как специалист по Data Science может решить эти задачи.
https://habr.com/company/group-ib/blog/420269/